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Abstract

In this paper the incoherent waves reflected by a random medium in the
parabolic regime are considered. The case in which the medium has
anisotropic three-dimensional rapid random fluctuations and one-dimensional
slow variations is analyzed. First, it is shown how the second-order statistics of
the reflected wave is determined by the slow spatial variations of the background
velocity, the scattering coefficient and the absorption coefficient of the medium
via a system of transport equations. Next, it is shown how observations of
the time-dependent intensity, spatial radius and spectral radius of the reflected
wave can be used to invert this system in order to reconstruct the parameters of
the medium. Finally, it is shown that the analytic framework set forth can also
be used to analyze the time dynamics of weak localization.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The parabolic regime for wave propagation in random media describes many important
physical situations, in geophysics [3], in optics [4, 14], in underwater acoustics [6, 15] or
in medical imaging [16]. This regime has been extensively studied and the properties of the
transmitted wave are well known. Much less is known about the reflected waves, because
the reflected waves are incoherent and have small amplitudes in this regime. However, in
many situations (in imaging or remote sensing) only the reflected waves can be measured,
and it is therefore important to study them and to show how information about the medium
can be extracted from the incoherent reflections. In [8] we showed that the second-order
moments of the reflected wave follow a system of transport equations in the case in which
the background velocity and impedance are constant, the medium is non-absorbing and the
random fluctuations of the medium are spatially stationary. In this paper we continue this
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analysis, we now assume that the medium is absorbing and has two types of fluctuations: on the
one hand, one-dimensional, deterministic, slow and smooth variations, and on the other hand,
anisotropic three-dimensional, random and rapid fluctuations. In this case the heterogeneities
in the medium do not create coherent reflected waves, the reflected waves are incoherent. We
develop the generalized system of transport equations in this inhomogeneous case, and we
show how the second-order statistics of the reflected waves depend on the slow variations
of the parameters of the medium. With this result we show that it is possible to image the
medium from the observation of the incoherent reflected waves, in the sense that it is possible
to invert the system of transport equations from the observation of the cross correlations of
the reflected wave and to reconstruct the one dimensional, slowly varying components of the
parameters of the medium.

Inverse problems in which one seeks to detect large-scale features of the environment from
multiply scattered waves have been addressed in a number of configurations, in particular in
[1, 5, 7, 13, 20]. In these papers, the authors address the situation in which the slow background
variations and the rapid random fluctuations of the medium are one dimensional. In our paper,
we discuss the case in which the slow background variations are one dimensional and the
rapid random fluctuations are three dimensional. This setting is particularly relevant for
background velocity estimation in geophysics. The formulation we use here is similar to that
used in [1], the information about the large-scale features of the medium is contained in the
cross moments of the reflected wave, which are solutions of transport equations in which the
background velocity appears. The inverse problem then consists in inverting the system of
transport equations.

In addition to solving the inverse problem, the analysis of the second-order statistics of
the reflected wave allows us to study carefully the enhanced backscattering phenomenon.
Enhanced backscattering (or weak localization) refers to the phenomenon that when an
incoming plane wave is applied with a given incidence angle, the mean reflected power
has a local maximum in the backscattered direction, twice as large as the mean reflected
power in the other directions. It was first predicted by physicists [2, 19] and then observed
in several experimental contexts [11, 17, 18, 21]. In this paper we study the dynamics of
weak localization. We show that the enhanced backscattering factor converges in time to 2 at
an exponential rate, while the angular width of the enhanced backscattering cone decays as a
power law.

The paper is organized as follows. We introduce the scaling regime and the quantities
of interest in section 2, and we present the system of transport equations for the reflection
operator in section 3. Then, we study systematically the second-order statistics of the reflected
waves in section 4, including enhanced backscattering in section 5. We use our results in
the context of imaging problems in section 6. Finally, in section 7, we carry out numerical
simulations in the case in which the background velocity or the statistical properties of the
microstructure is stepwise constant, and when the detection problem involves identification
of the location of the interface at which the parameters change and also the parameters of the
medium on either side.

2. Waves in a random medium

We consider linear acoustic waves propagating in 1 +d spatial dimensions with heterogeneous
and random medium fluctuations. The governing equations are

ρ(z,x)
∂u

∂t
+ ∇p + γ (z,x)u = F ,

1

K(z,x)

∂p

∂t
+ ∇ · u = 0, (1)
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where p is the pressure, u is the velocity, ρ is the density of the medium, K is the bulk modulus
of the medium, γ is the absorption coefficient and (z,x) ∈ R × R

d are the space coordinates.
The source is modeled by the forcing term F . Here we shall focus on propagation through
and reflection from a random slab occupying the interval z ∈ (0, L) with the source F located
outside of the slab, say at z = L. The parameterization is motivated by waves probing for
instance the heterogeneous earth and one may think of z as the main probing direction. We
shall refer to waves propagating in a direction with a positive z component as right-propagating
waves.

The medium parameters in the random slab (0, L) have two types of spatial variations: on
the one hand, anisotropic three-dimensional, small, rapid and random fluctuations and on the
other hand, one-dimensional, slow, and deterministic variations (those that we want to identify
in the imaging problem). Outside the slab (0, L) the medium is non-absorbing and has only
slow and smooth variations. The medium is assumed to be matched at the boundaries z = 0
and z = L. The medium parameters can be written as

1

K(z,x)
=

⎧⎪⎨⎪⎩
K−1

0 (z) if z � 0,

K−1
0 (z) (1 + νK(z,x)) if z ∈ (0, L),

K−1
0 (z) if z � L,

ρ(z,x) = ρ0(z), γ (z,x) =
⎧⎨⎩

0 if z � 0,

γ0(z) if z ∈ (0, L),

0 if z � L,

where ρ0,K0 and γ0 are the deterministic smooth functions that describe the one-dimensional
slow variations of the medium and the random field νK(z,x) models the three-dimensional
rapid random fluctuations. The process νK has zero mean and its autocorrelation function is
of the form

CK(z, z′,x′) = E[νK(z + z′,x + x′)νK(z,x)].

Note that CK does not depend on x, which means that the statistics of νK is stationary in
the transverse direction, but CK does depend on z. As explained in detail below we shall
assume that the dependence on z is relatively slow and that the statistics is locally stationary
in the longitudinal direction. We assume that the random fluctuations of the medium are
smooth in x′ so that CK is at least twice differentiable at x′ = 0, with �x′CK(z, 0, 0) < 0.
The longitudinal (respectively transverse) correlation radius lz (respectively lx) of the random
fluctuations and the standard deviation σ can be defined by

σ 2 = 1

L

∫ L

0
CK(z, 0, 0) dz, (2)

σ 2lz = 1

L

∫ L

0

∫ ∞

−∞
CK(z, z′, 0) dz′ dz, (3)

σ 2

l2
x

= − 1

dL

∫ L

0
�x′CK(z, 0, 0) dz. (4)

The source is located at the surface z = L and it has the form

F (t, z,x) = fs(t,x)δ(z − L)ez,

where ez is the unit vector pointing in the z-direction. We denote by ω0 the typical frequency
of the source term fs and by R0 the diameter of its spatial support (which gives the initial beam
width). The typical wavelength associated with the typical frequency ω0 is λ0 = 2πc0(L)/ω0,
for c0(L) = √

K0(L)/ρ0(L) the background speed at z = L.
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2.1. Scaling

We now describe the scaling regime that we consider in this paper, which ensures that both
the paraxial (or parabolic) approximation and the white-noise approximation are valid. We
introduce a typical propagation distance lp, which is of the same order as the width L of the
random slab:

(i) We assume that the longitudinal correlation length lz of the medium is smaller than the
transverse correlation length lx , which is smaller than the propagation distance lp. In
geophysics we typically have lp ∼ 104 m, lx ∼ 102–103 m and lz ∼ 1–10 m. Denoting
by ε2 the ratio between the longitudinal correlation length lz and the propagation distance
lp, we assume that we have lz/ lp = ε2 and lx/ lp ∼ ε. In this regime we anticipate
that the longitudinal random fluctuations of the medium can be approximated by a ‘white
noise’. We remark that the statistics of the medium may change on the scale say of major
geological features, corresponding to the scale lp.

(ii) We assume that the width of the beam R0 and the transverse correlation length of the
medium lx are of the same order. In geophysics the source can be an explosion at the
sea surface that generates a field which expands so that its width becomes of the order of
102–103 m at the sea bottom. Accordingly we assume that the ratio R0/lp is of order ε.
In this regime, there is a non-trivial interaction between the transverse fluctuations of the
medium and the beam.

(iii) We assume that the typical wavelength λ0 of the source is of the same order as the
longitudinal correlation length lz. In geophysics we typically have λ0 = 10–102 m.
Accordingly we assume that the ratio λ0/lp is of order ε2. In this regime, there is a
non-trivial interaction between the longitudinal fluctuations of the medium and the beam.
Moreover, the ratio of the Rayleigh length πR2

0

/
λ0 over the propagation distance lp is

also of order one. Since the Rayleigh length is the distance from beam waist where the
beam area is doubled by diffraction in a homogeneous medium, this means that diffraction
effects are expected to be of order one, which corresponds to the parabolic regime.

(iv) We assume that the amplitude of the random medium fluctuations is weak. In geophysics
the fluctuations of the sound speed in the earth’s crust is of the order of 10%. Accordingly
we assume that σ ∼ ε.

We now put the system in dimensionless form. We consider the propagation distance,
lp, as our reference distance. We denote by ρ̄ and K̄ a typical density and bulk modulus (for
instance, the density and bulk modulus at the surface), and by c̄ =

√
K̄/ρ̄ and ζ̄ =

√
K̄ρ̄ the

corresponding speed and impedance. The evolution equations for the dimensionless variables
(p̃, ũ)(t̃ , z̃, x̃) defined by

u = ζ̄−1/2ũ, p = ζ̄ 1/2p̃, F = lpζ̄ 1/2F̃ , ρ = ρ̄ρ̃, K = K̄K̃,

γ = ζ̄ l−1
p γ̃ , L = lpL̃, (z,x) = lp(z̃, x̃), t = lpc̄−1 t̃

have the form (1), however, with the ‘tilde’ quantities. In this new frame the width of the
random slab is of order one, the typical wavelength and the longitudinal correlation length are
of order ε2, and so on. From now on we drop the tildes.

In the dimensionless frame the source has the form

F ε(t, z,x) = 1

ε
f

(
t

ε2
,
x

ε

)
δ(z − L)ez, (5)

where f (t,x) is the normalized source shape function (with time and spatial scales of
variations of order one). The strong amplitude factor 1/ε ensures that the reflected wave
has a typical amplitude of order one (this is in fact not important since the propagation
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equations are linear). The Fourier transform in t of f is assumed to have a compact support
contained in ±[ω0(1−B), ω0(1 +B)], where ω0 is the carrier frequency and 2B is the relative
bandwidth.

The medium fluctuations have the form

1

Kε(z,x)
=

⎧⎪⎪⎨⎪⎪⎩
K−1

0 (z) if z ∈ (−∞, 0),

K−1
0 (z)

(
1 + εν

(
z,

z

ε2
,
x

ε

))
if z ∈ (0, L),

K−1
0 (z) if z ∈ (L,∞),

ρε(z,x) = ρ0(z),

γ ε(z,x) =
⎧⎨⎩

0 if z ∈ (−∞, 0),

γ0(z) if z ∈ (0, L),

0 if z ∈ (L,∞),

where K0, ρ0 and γ0 are smooth functions (of class C2) with scales of variations of order
one. The random field ν(z, z′,x′) models the spatial fluctuations of the medium. For a fixed
z, we assume that (z′,x′) �→ ν(z, z′,x′) is a zero-mean stationary random process which
satisfies strong mixing conditions with respect to the variable z′. The dependence with respect
to the first variable z models a variation along the longitudinal direction of the statistical
properties of the random fluctuations. The important statistical information is contained in the
autocorrelation function defined by

C(z, z′,x′) = E[ν(z, z′′ + z′,x′′ + x′)ν(z, z′′,x′′)], (6)

which is assumed to be at least twice differentiable at x′ = 0 and vanishing as |x′| → ∞.
Since both the medium and the source have transverse spatial variations at the scale ε, it

is convenient to rescale the transverse variable x/ε → x and to introduce the rescaled fields
uε and pε:

uε(t, z,x) = u(t, z, εx), pε(t, z,x) = p(t, z, εx). (7)

The reader should keep in mind that thus, in the discussion below, when we refer to the
transversal spatial parameter x it corresponds to εx in the original coordinates.

2.2. Mode decomposition

In order to identify equations that give a convenient description of coupling between different
wave modes we now decompose the pressure and longitudinal velocity fields as

pε(t, z,x) = ζ0(z)
1/2

2π

∫ (
ǎε (ω, z,x) ei ωτ0(z)

ε2 + b̌ε (ω, z,x) e−i ωτ0(z)

ε2
)

e−i ωt

ε2 dω, (8)

ez ·uε(t, z,x) = ζ0(z)
−1/2

2π

∫ (
ǎε (ω, z,x) ei ωτ0(z)

ε2 − b̌ε (ω, z,x) e−i ωτ0(z)

ε2
)

e−i ωt

ε2 dω, (9)

where ǎε and b̌ε are right-propagating and left-propagating modes, respectively. Here we have
introduced the background impedance ζ0(z), velocity c0(z) and travel time τ0(z):

ζ0(z) =
√

K0(z)ρ0(z), c0(z) =
√

K0(z)√
ρ0(z)

, τ0(z) =
∫ z

0

dz′

c0(z′)
.

In the homogeneous medium (ν = 0 and ρ0,K0, γ0 independent of z), expressions (8)
and (9) give a decomposition into uncoupled right- and left-propagating modes [6]. In the
inhomogeneous case, by substituting (8) and (9) into the wave equations (1) we obtain the

5
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0 L
z

b̌ε(0−)

ǎε(0−) = 0

b̌ε(0+)

ǎε(0+)

b̌ε(L+) = 0

ǎε(L+)

b̌ε(L−)

ǎε(L−)

Figure 1. Boundary conditions for the modes in the presence of a random slab (0, L) and a source
at z = L.

coupled mode equations:

dǎε

dz
= Lεǎε + e−2i ωτ0(z)

ε2 Lεb̌ε − γ0(z)

2ζ0(z)

(
ǎε − e−2i ωτ0(z)

ε2 b̌ε
)− ζ ′

0(z)

2ζ0(z)
e−2i ωτ0(z)

ε2 b̌ε, (10)

db̌ε

dz
= −e2i ωτ0(z)

ε2 Lεǎε − Lεb̌ε − γ0(z)

2ζ0(z)

(
e2i ωτ0(z)

ε2 ǎε − b̌ε
)− ζ ′

0(z)

2ζ0(z)
e2i ωτ0(z)

ε2 ǎε, (11)

where

Lε = iω

2c0(z)ε
ν

(
z,

z

ε2
,x

)
+

i

2 ω
c0(z)

+ 2iε2 γ0(z)

ζ0(z)


⊥,


⊥ is the transverse Laplacian and ζ ′
0 is the spatial derivative of ζ0. Note that the

evolution equations (10) and (11) have terms with rapid phases and rapid random fluctuations.
We anticipate that the terms with amplitudes of order one and rapid phases of the form
exp(±2iωτ0(z)/ε

2) vanish in the limit ε → 0 by homogenization arguments (however, the
terms with rapid phases and large amplitudes of order ε−1 deserve particular attention). Note
also that the random process appears in the scaled form 1

ε
ν
(
z, z

ε2 ,x
)
, which is the scaling

of the diffusion approximation regime, thus we anticipate that these terms will give rise to
Brownian fields in the limit ε → 0.

Finally, we remark that indeed the right- and left-propagating modes give a complete
description with the transverse velocity field exi

· uε(t, z,x), i = 1, . . . , d, deriving from the
modes ǎε and b̌ε as

exi
·uε(t, z,x) = ζ0(z)

−1/2

2π

∫ −εi
ω

c0(z)
+ iε2 γ0(z)

ζ0(z)

×
(

∂ǎε

∂xi

(ω, z,x) ei ωτ0(z)

ε2 +
∂b̌ε

∂xi

(ω, z,x) e−i ωτ0(z)

ε2

)
e−i ωt

ε2 dω.

2.3. Boundary conditions

The mode amplitudes ǎε and b̌ε satisfy the system (10) and (11) in the random slab z ∈ (0, L).
This system is completed by boundary conditions corresponding to the presence of the source
term (5) in the plane z = L and the radiation condition at infinity, see figure 1.

Taking into account the fact that there is no source in (−∞, 0), the right-going mode
amplitudes ǎε are zero in this half-space. By the continuity of the fields pε and ez ·uε at
z = 0, this gives the first boundary condition

ǎε(ω, 0+,x) = 0, b̌ε(ω, 0+,x) = b̌ε(ω, 0−,x). (12)

Taking into account the fact that there is no source in (L,∞), the left-going mode
amplitudes b̌ε are zero in this half-space. The jump conditions across the source interface

6
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z = L then give the relation

b̌ε(ω, L−,x) = 1

ε
ei ωτ0(L)

ε2 b̌s(ω,x), b̌s(ω,x) = − 1

2ζ0(L)1/2
f̌ (ω,x), (13)

where the time Fourier transform is defined by

f̌ (ω,x) =
∫

f (t,x) eiωt dt. (14)

We also have

ǎε(ω, L+,x) = ǎε(ω, L−,x) − 1

ε
e−i ωτ0(L)

ε2 b̌s(ω,x),

which means that the field observed at L+ is a right-going wave ǎε(ω, L+,x) that is the
superposition of the field reflected by the random slab, ǎε(ω, L−,x), and of the field emitted
to the right by the source. This direct source contribution is concentrated in time on a small
interval with center at 0 and time width of order ε2 and we will not take it into account in the
following.

2.4. Reflection and transmission operators

The system (10) and (11) is complemented by the boundary conditions (12) and (13) at z = 0
and z = L. As a consequence, the modes (ǎε, b̌ε) are not adapted to the filtration of the random
process ν, so that the limit theorems for the solutions of random differential equations cannot
be applied directly, but a preliminary invariant imbedding step is necessary to obtain adapted
processes. We introduce reflection and transmission operators by defining the transverse
Fourier modes by

âε(ω, z, κ) =
∫

ǎε(ω, z,x) e−iκ·x dx, b̂ε(ω, z, κ) =
∫

b̌ε(ω, z,x) e−iκ·x dx, (15)

and by making the ansatz for z ∈ (0, L):

b̂ε(ω, 0, κ) =
∫

T̂ ε(ω, z, κ, κ′)b̂ε(ω, z, κ′) dκ′, (16)

âε(ω, z, κ) =
∫

R̂ε(ω, z, κ, κ′)b̂ε(ω, z, κ′) dκ′. (17)

The incoming wave is given by b̂ε(ω, L−, κ′), the operator T̂ ε(ω, L, κ, κ′) maps it to the
wave b̂ε(ω, 0, κ) transmitted to z = 0 while the operator R̂ε(ω, L, κ, κ′) maps it to the wave
âε(ω, L−, κ) reflected from the random slab at z = L.

Using the mode coupling equations (10) and (11) one finds

d

dz
R̂ε(ω, z, κ, κ′) = −γ0(z)

ζ0(z)
R̂ε(ω, z, κ, κ′) + e−2i ωτ0(z)

ε2 L̂ε(ω, z, κ, κ′)

+ e2i ωτ0(z)

ε2

∫ ∫
R̂ε(ω, z, κ, κ1)L̂ε(ω, z, κ1, κ2)R̂ε(ω, z, κ2, κ′) dκ1 dκ2

+
∫

L̂ε(ω, z, κ, κ1)R̂ε(ω, z, κ1, κ′) + R̂ε(ω, z, κ, κ1)L̂ε(ω, z, κ1, κ′) dκ1

+

(
γ0(z)

2ζ0(z)
+

ζ ′
0(z)

2ζ0(z)

)
e2i ωτ0(z)

ε2

∫
R̂ε(ω, z, κ, κ1)R̂ε(ω, z, κ1, κ′) dκ1

+

(
γ0(z)

ζ0(z)
+

ζ ′
0(z)

2ζ0(z)

)
e−2i ωτ0(z)

ε2 δ(κ − κ′), (18)

7
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d

dz
T̂ ε(ω, z, κ, κ′) = γ0(z)

2ζ0(z)
T̂ ε(ω, z, κ, κ′) +

∫
T̂ ε(ω, z, κ, κ1)L̂ε(ω, z, κ1, κ′) dκ1

+ e2i ωτ0(z)

ε2

∫ ∫
T̂ ε(ω, z, κ, κ1)L̂ε(ω, z, κ1, κ2)R̂ε(ω, z, κ2, κ′) dκ1 dκ2

+

(
γ0(z)

2ζ0(z)
+

ζ ′
0(z)

2ζ0(z)

)
e2i ωτ0(z)

ε2

∫
T̂ ε(ω, z, κ, κ1)R̂ε(ω, z, κ1, κ′) dκ1, (19)

where we have defined

L̂ε(ω, z, κ1, κ2) = iω

ε2(2π)dc0(z)
ν̂

(
z,

z

ε2
, κ1 − κ2

)
− i|κ1|2

2 ω
c0(z)

+ 2iε2 γ0(z)

ζ0(z)

δ(κ1 − κ2), (20)

with ν̂(z, z′, κ) the partial Fourier transform in x′ of ν(z, z′,x′) (as in (15)). This system is
complemented with the initial conditions

R̂ε(ω, z = 0, κ, κ′) = 0, T̂ ε(ω, z = 0, κ, κ′) = δ(κ − κ′), (21)

corresponding to the boundary conditions (12) and (13). Note that the reflection and
transmission operators are adapted to the filtration of the random process ν. The reflected
wave field observed at the surface z = L is

pε
ref(t,x) = ζ0(L)1/2

2π

∫
ǎε(ω, L−,x) ei ωτ0(L)

ε2 e−i ωt

ε2 dω

= ζ0(L)1/2

(2π)d+1ε

∫ ∫ ∫
R̂ε(ω, L, κ, κ′)b̂s(ω, κ′) eiκ·xei ω

ε2 [2τ0(L)−t] dω dκ dκ′.

It is thus clear that the statistical properties of the reflected field are determined by those of the
reflection operator which in turn are determined by the medium parameters. We shall show
how this fact can be exploited to infer knowledge about the medium based on observations of
the reflected field.

Again the evolution equations (16) and (19) have terms with rapid phases and rapid
random fluctuations and we anticipate that the terms with amplitudes of order one and rapid
phases of the form exp(±2iωτ0(z)/ε

2) have only small impact on the quantities of interest in
the limit ε → 0. This is confirmed by our analysis in appendix A. Thus, the terms involving ζ ′

0
which reflect backscattering associated with variations in the homogenized medium have only
a lower order influence. We stress that the inverse problem that we are considering here thus
has a different character from the traditional context in which (strong) backscattering from
the macroscale or homogenized medium is being used to for instance estimate velocity. We
consider here a regime where the traditional approaches fail since coherent backscattering is
relatively small and we have to use incoherent waves and their spectral contents for the task
of inferring knowledge about the macroscale medium parameters. This approach was taken
in [1], which dealt with the case of a perfectly layered medium, and the analysis here follows
a similar vein.

3. Asymptotic analysis of the reflection operator

3.1. Transport equations in the weak backscattering regime

The analysis carried out in appendix A first shows that odd-order moments of the reflection
operator are zero in the limit ε → 0. As a result the mean reflected field is zero:

lim
ε→0

E
[
pε

ref(t,x)
] = 0.

8



Inverse Problems 25 (2009) 045005 J Garnier and K Sølna

The cross correlations of the reflected wave field are not zero and they provide information
about the medium. They can be written as

lim
ε→0

E
[
pε

ref(t,x)pε
ref(t + ε2s,x′)

] = ζ0(L)

(2π)2d+1

∫
· · ·
∫

W(κ1,κ2),(κ3,κ4)(ω, t, L)

× ei(κ1·x−κ3·x′)eiωs b̂s(ω, κ2)b̂s(ω, κ4) dω dκ1 dκ2 dκ3 dκ4, (22)

where the cross spectral density W is defined by

W(κ1,κ2),(κ3,κ4)(ω, τ, z) = lim
ε→0

1

2π

∫
E

[
R̂ε

(
ω +

ε2h

2
, z, κ1, κ2

)
× R̂ε

(
ω − ε2h

2
, z, κ3, κ4

)]
e−ih[τ−2τ0(z)] dh. (23)

It is possible to give a complete description of the cross spectral density in the frequency band
[ω0 −B,ω0 +B] of the source and in the regime of weak backscattering. Weak backscattering
occurs if

δ := sup
κ∈R

d ,z∈(0,L),ω∈[ω0(1−B),ω0(1+B)]

|Ĉ(z, 2ω/c0(z), κ)|
Ĉ(z, 0, 0)

� 1, (24)

where Ĉ is the Fourier transform of the autocorrelation function C defined by

Ĉ(z, k, κ) =
∫

R
d

∫ ∞

−∞
C(z, z′,x′) e−i(kz′+κ·x′) dz′ dx′. (25)

As can be seen in appendix A, the term Ĉ(z, 2ω/c0(z), κ) is proportional to the conversion
rate (at location z) between right- and left-going modes, while Ĉ(z, 0, κ) is proportional to the
conversion rate between two left-going modes (or between two right-going modes). In other
words, δ is the ratio of the backscattering rate over the forward scattering rate.

Proposition 3.1. In the weak backscattering regime the cross spectral density (23) has the
form

W(κ1,κ2),(κ3,κ4)(ω, τ, z) = Vκ2−κ4,κ1+κ4,κ1−κ2(ω, τ, z)δ(κ1 − κ2 − κ3 + κ4), (26)

where Vκu,κv,κw
(ω, τ, z) is the solution of the system of transport equations

∂Vκu,κv,κw

∂z
+

2

c0(z)

∂Vκu,κv,κw

∂τ
= −2γ0(z)

ζ0(z)
Vκu,κv,κw

− ic0(z)

ω
κu · κvVκu,κv,κw

+
ω2

4(2π)dc2
0(z)

∫
Ĉ(z, 0, κ){Vκu,κv−κ,κw−κ + Vκu,κv−κ,κw+κ + Vκu−κ,κv,κw−κ

+ Vκu−κ,κv,κw+κ − Vκu−κ,κv−κ,κw
− Vκu+κ,κv−κ,κw

− 2Vκu,κv,κw
} dκ

+
ω2

4(2π)dc2
0(z)

Ĉ

(
z,

2ω

c0(z)
, κw

)
δ(τ ), (27)

starting from Vκu,κv,κw
(ω, τ, z = 0) = 0.

This proposition is proved in appendix A. It shows that the second-order statistics of
the reflected wave depend on the macroscale features of the medium through the system
of transport equations (27). The inverse (or imaging) problem consists in determining the
coefficients of the transport equations from the solution V . In fact, we will see in the
following that we do not need to know all of V in order to solve the inverse problem, because
of the one-dimensional structure of the macroscale features of the medium.
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3.2. Fraunhofer approximation and narrow bandwidth

It is possible to get closed-form expressions for physically relevant quantities from the system
(27). These expressions become simple in a special regime that we now describe. We define
the longitudinal (respectively transverse) correlation radius lz (respectively lx) of the random
fluctuations and the standard deviation σ of the fluctuations as in (2)–(4). If we also introduce
the typical speed of sound c̄ of the medium, then the parameters

α = c̄L

ω0l2
x

, β = ω2
0Lσ 2lz

4c̄2
, (28)

are the two dimensionless parameters that determine the behavior of the cross spectral density,
as shown in appendix B. We remark that these parameters can either be computed using the
original scaled parameters and CK as in (2) or by using C in (6) along with non-dimensionalized
parameters. The parameter α is the inverse of the Fresnel number that characterizes the strength
of diffraction, while the parameter β characterizes the strength of random forward scattering.
The strength of random backscattering relative to random forward scattering is δ defined by
(24). In appendix D we analyze the behavior of the cross spectral density in the regime α 
 1
which corresponds to Fraunhofer approximation. The solution to the transport equations in this
regime is given in lemmas D.1 and D.2. Under the additional assumption of narrow bandwidth
B � 1 these results give in turn simple closed-form expressions for many physically relevant
quantities and we discuss some of these in the following section. Accordingly we shall refer
to the regime characterized by

δ � 1, α 
 1, B � 1, (29)

as the Fraunhofer weak backscattering regime.

4. The second-order statistics of the reflected waves

In this section we assume the weak backscattering regime described by assumption (24).
In this regime we obtain an explicit expression for the intensity of the reflected wave in
section 4.1. Under the additional assumption of Fraunhofer approximation and narrow
bandwidth, that is, the Fraunhofer weak backscattering regime in (29), we obtain explicit
expressions for the time-resolved reflected beam width, the spectral beam width, the spatial
and spectral cross correlation functions in sections 4.2–4.5.

4.1. Mean reflected intensity

As a first application of proposition 3.1, we compute the mean reflected intensity at time t:

I ε(t) = 1

ζ0(L)

∫
E
[
pε

ref(t,x)2] dx, (30)

which is the total power reflected by the random slab at time t.

Proposition 4.1. In the weak backscattering regime the mean reflected intensity I ε(t) has the
limit I (t) as ε → 0:

I (t) = 1

(2π)d+1

∫
Pref(ω, t)

[ ∫
|b̂s(ω, κ′)|2 dκ′

]
dω, (31)

where

Pref(ω, t) = ω2

8c0(z(t))
Č

(
z(t),

2ω

c0(z(t))
, 0

)
exp

(
−2
∫ L

z(t)

γ0(z
′)

ζ0(z′)
dz′
)

. (32)

10
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Here Č is the partial Fourier transform of the autocorrelation function C

Č(z, k,x) =
∫

C(z, z′,x) e−ikz′
dz′, (33)

and we have assumed z(t) ∈ (0, L) when defined such that∫ L

z(t)

1

c0(z′)
dz′ = t

2
. (34)

This proposition is proved in appendix C. Remember that the total input energy is

Es = 1

(2π)d+1

∫ [ ∫
|b̂s(ω, κ′)|2 dκ′

]
dω, (35)

so that Pref(ω, t) can be interpreted as the spectral density of power reflection at (or around)
time t. We observe that the reflected intensity observed at time t corresponds to incoherent
waves that have probed the medium from z = L to z = z(t) and that have been reflected at
(or around) z = z(t). In more detail:

(i) Pref(ω, t) and I (t) are zero if t �∈ (0, 2τ0(L))). The distance z(t) corresponds to a round
trip from L to z(t) whose duration is t when moving with the background velocity c0(z).

(ii) The term ω2

8c0(z(t))
Č
(
z(t), 2ω

c0(z(t))
, 0
)

gives the generation rate of backpropagating wave
energy at location z(t) and frequency ω.

(iii) The term exp
(−2
∫ L

z(t)

γ0(z
′)

ζ0(z′) dz′) is the damping that occurs during a round trip from L to
z(t) in the absorbing medium.

If the background velocity c0, impedance ζ0, absorption γ0 and the function Č do not
depend on z, then the mean reflected intensity is zero if t �∈ (0, 2L/c0). If t ∈ (0, 2L/c0),
then we have z(t) = L − c0t/2 and

Pref(ω, t) = ω2

8c0
Č

(
2ω

c0
, 0

)
e−c0t

γ0
ζ0 ,

which shows that the reflected intensity decays exponentially in time due to absorption.

4.2. Beam width

We define the rms (root-mean-squared) width Rε(t) of the reflected wave at time t by

Rε2
(t) =

∫ |x|2E[pε
ref(t,x)2

]
dx∫

E
[
pε

ref(t,x)2
]

dx
. (36)

Proposition 4.2. In the Fraunhofer weak backscattering regime (29) the beam width Rε(t)

converges to R(t) as ε → 0, where R(t) is given by

R2(t) = R2
0 − 1

2

∫ L

z(t)

c−2
0 (z′)�xČ(z′, 0, 0)[D0(z(t))

2 + (D0(z(t)) − D0(z
′))2] dz′

+ 4
K2

0

ω2
0

D0(z(t))
2 + 4

Q0

ω0
D0(z(t)) − 1

ω2
0

�xČ
(
z(t), 2ω0

c0(z(t))
, 0
)

Č
(
z(t), 2ω0

c0(z(t))
, 0
) D0(z(t))

2. (37)

Here z(t) is defined by (34), D0(z) is given by

D0(z) =
∫ L

z

c0(z
′) dz′, (38)

11
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R0 (respectively K0) is the rms beam width (respectively spectral width) of the input beam:

R2
0 =
∫∫ |x|2|b̌s(ω,x)|2 dx dω∫∫ |b̌s(ω,x)|2 dx dω

, K2
0 =
∫∫ |κ|2|b̂s(ω, κ)|2 dκ dω∫∫ |b̂s(ω, κ)|2 dκ dω

, (39)

and Q0 is defined by

Q0 =
∫∫

κ · Im(b̂s∇κb̂s(ω, κ)) dκ dω∫∫ |b̂s(ω, κ)|2 dκ dω
= − ∫∫ x · Im(b̌s∇xb̌s(ω,x)) dx dω∫∫ |b̌s(ω,x)|2 dx dω

. (40)

This proposition is proved in appendix E. For instance, in the case of a narrowband Gaussian
beam bs(t,x) with a spatial chirp, obtained by sending a Gaussian beam with radius r0 through
a converging (b0 < 0) or diverging (b0 > 0) lens [10, section 18.4], we have

b̂s(ω, κ) = ĝ(ω) e− 1
2 (1+i b0

ω
)r2

0 |κ|2 , R2
0 = r2

0

2

(
1 +

b2
0

ω2
0

)
, K2

0 = 1

2r2
0

, Q0 = b0

2ω0
,

(41)

with ĝ being the Fourier transform of the pulse function of the source with carrier
frequency ω0.

We can interpret all terms in expression (37):

(i) The first term (with R0) is the initial beam width.
(ii) The second term (with �xČ(z′, 0, 0)) is the spreading effect due to random forward

scattering; it is the only term (along with the initial beam width) that is independent of ω0

(i.e. of the frequency).
(iii) The third term (with K0) is due to the natural beam diffraction.
(iv) The fourth term (with Q0) is a convergence or divergence effect due to the curvature of

the initial beam phase front; this term is the only one in the sum that can be negative;
the condition Q0 < 0 means that the input beam has an initial phase front that makes it
converge, but this convergence is eventually overwhelmed by natural diffraction, and also
by the spreading induced by random scattering.

(v) The last term (with �xČ(z(t), 2ω0
c0

, 0)) is the spreading induced by random backward
scattering. This term is pointwise, in the sense that it depends only on the properties of
the medium at z(t), while the forward scattering term (ii) is cumulative and depends on
the properties of the medium between z(t) and L.

If the background velocity c0 and the function Č do not depend on z, then the squared
rms radius has a cubic polynomial expression in terms of t ∈ (0, 2L/c0):

R2(t) = R2
0 − 2

3
�xČ(0, 0)

(
c0t

2

)3

+ 4
K2

0 c2
0

ω2
0

(
c0t

2

)2

+ 4
Q0c0

ω0

(
c0t

2

)
− c2

0

ω2
0

�xČ
( 2ω0

c0
, 0
)

Č
( 2ω0

c0
, 0
) (c0t

2

)2

. (42)

This shows that random forward scattering is the dominant phenomenon for long times and
that the beam width increases like t3/2. The increase rate t3/2 of the beam width is specific
to our regime in which the medium fluctuations are anisotropic (the longitudinal correlation
length is much smaller than the transverse correlation length). The increase rate of the beam
width in an isotropic random medium is known to be t1/2 and can be obtained by the radiative
transfer or diffusion theory [12].

12
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4.3. Spectral width

We define the rms spectral width Kε(t) of the reflected wave at time t by

Kε2
(t) =

∫
E
[∣∣∇xpε

ref(t,x)
∣∣2] dx∫

E
[
pε

ref(t,x)2
]

dx
=
∫ |κ|2E[∣∣p̂ε

ref(t, κ)
∣∣2] dκ∫

E
[∣∣p̂ε

ref(t, κ)
∣∣2] dκ

. (43)

Proposition 4.3. In the Fraunhofer weak backscattering regime the spectral width Kε(t)

converges to K(t) as ε → 0, where K(t) is given by

K2(t) = K2
0 − ω2

0

2

∫ L

z(t)

c−2
0 (z′)�xČ(z′, 0, 0) dz′ −

�xČ
(
z(t), 2ω0

c0(z(t))
, 0
)

Č
(
z(t), 2ω0

c0(z(t))
, 0
) . (44)

This proposition is proved in appendix F. In expression (44),

(i) The first term K2
0 is the initial spectral width (squared).

(ii) The second term (with �xČ(z′, 0, 0)) is the spectral broadening due to random forward
scattering during the round trip from L to z(t).

(iii) The third term is the spectral broadening due to random backward scattering at z(t).

If the background velocity c0 and the function Č do not depend on z, then the squared
rms spectral width is a linear expression in terms of t ∈ (0, 2L/c0):

K2(t) = K2
0 − ω2

0

2c2
0

�xČ(0, 0)

(
c0t

2

)
−

�xČ
( 2ω0

c0
, 0
)

Č
( 2ω0

c0
, 0
) . (45)

This shows that the spectral broadening is dominated by random forward scattering for long
times and that the spectral width grows like t1/2.

4.4. Spatial cross correlation function

Here we consider the spatial cross correlation function:

Aε(t,x) =
∫

E
[
pε

ref(t,x
′)pε

ref(t,x
′ + x)
]

dx′∫
E
[
pε

ref(t,x
′)2
]

dx′ .

Proposition 4.4. In the Fraunhofer weak backscattering regime the spatial cross correlation
function Aε(t,x) has the limit A(t,x) as ε → 0, where A(t,x) is given by

A(t,x)= A0(x)
Č
(
z(t), 2ω0

c0(z(t))
,x
)

Č
(
z(t), 2ω0

c0(z(t))
, 0
) exp

(
ω2

0

2

∫ L

z(t)

c−2
0 (z′)[Č(z′, 0,x)− Č(z′, 0, 0)] dz′

)
, (46)

A0(x) =
∫∫

e−iκ′ ·x|b̂s(ω, κ′)|2 dκ′ dω∫∫ |b̂s(ω, κ′)|2 dκ′ dω
. (47)

This proposition is proved in appendix G. There are three factors in the spatial cross correlation
function (46):

(i) The first factor A0(x) is the contribution of the spatial diversity of the input beam.
(ii) The second factor gives the spatial decorrelation that is associated with the random

backscattering at z(t).
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(iii) The third factor is the decorrelation deriving from the random forward scattering during
the round trip from L to z(t) and back.

If the background velocity c0 and the function Č do not depend on z, then we have for any
t ∈ (0, 2L/c0):

A(t,x) = A0(x)
Č
( 2ω0

c0
,x
)

Č
( 2ω0

c0
, 0
) exp

(
ω2

0

2c2
0

[Č(0,x) − Č(0, 0)]

(
c0t

2

))
.

This shows that, for small times, the cross correlation function is determined by the form
of the input beam and the spatial distribution of the backscattering process. For times large
enough so that β(c0t)/L 
 1, the cross correlation function is determined by random forward
scattering and we have approximately, if Č is isotropic in x:

A(t,x)
β(c0t)/L
1� A0(x)

Č
( 2ω0

c0
,x
)

Č
( 2ω0

c0
, 0
) exp

(
ω2

0t

4c0d
�xČ(0, 0)|x|2

)
,

which shows that the correlation radius decays as t−1/2.

4.5. Spectral cross correlation function

Here we consider the spectral cross correlation function:

Sε(t, κ) =
∫

E
[
p̂ε

ref(t, κ′)p̂ε
ref(t, κ′ + κ)

]
dκ′∫

E
[∣∣p̂ε

ref(t, κ′)
∣∣2] dκ′

.

Proposition 4.5. In the Fraunhofer weak backscattering regime the spectral cross correlation
function Sε(t, κ) has the limit S(t, κ) as ε → 0, where S(t, κ) is given by

S(t, κ) = A0

(
2
D0(z(t))

ω0
κ

)
Č
(
z(t), 2ω0

c0(z(t))
, D0(z(t))

ω0
κ
)

Č
(
z(t), 2ω0

c0(z(t))
, 0
)

× exp

(
ω2

0

4

∫ L

z(t)

c−2
0 (z′)
{
Č

(
z′, 0, [2D0(z(t)) − D0(z

′)]
κ

ω0

)
+ Č

(
z′, 0,D0(z

′)
κ

ω0

)
− 2Č(z′, 0, 0)

}
dz′
)

. (48)

This proposition is proved in appendix H. If the background velocity c0 and the function Č do
not depend on z, then we have for any t ∈ (0, 2L/c0):

S(t, κ) = A0

(
c0t

c0κ

ω0

)
Č
( 2ω0

c0
, c0t

2
c0κ
ω0

)
Č
( 2ω0

c0
, 0
) exp

(
ω2

0

4c2
0

∫ c0t

0

{
Č

(
0, z′ c0κ

ω0

)
− Č(0, 0)

}
dz′
)

.

If β � 1 (i.e. if random forward scattering is weak), then the form of the spectral cross
correlation function is determined by the input beam and the backscattering process. If
β 
 1, then the cross correlation function is determined by random forward scattering and
we have approximately, if Č is isotropic in x:

S(t, κ)
β
1� A0

(
c0t

c0κ

ω0

)
Č
( 2ω0

c0
, c0t

2
c0κ
ω0

)
Č
( 2ω0

c0
, 0
) exp

(
c3

0t
3

24d
�xČ(0, 0)|κ|2

)
,

which shows that the spectral coherence radius decays as t−3/2.

14



Inverse Problems 25 (2009) 045005 J Garnier and K Sølna

5. Enhanced backscattering

In this section, we study the dynamics of enhanced backscattering, and compute the time-
dependent maximum, angular width and shape of the enhanced backscattering cone. We
consider the following experiment: for a given κ0, we send a quasi-plane wave with carrier
frequency ω0, carrier wave vector κ0, and angular aperture smaller than α−1(ω0lx/c̄)

−1. We
record the reflected power in the backscattered direction −κ0 or close to it, in a cone of angular
aperture of order α−1(ω0lx/c̄)

−1:∣∣p̂ε
ref(t,−κ0 + κ)

∣∣2 =
∣∣∣∣ ∫ pε

ref(t,x) e−i(−κ0+κ)·x dx

∣∣∣∣2
= ζ0(L)

(2π)2ε

∣∣∣∣ ∫ ∫ R̂ε(ω, L,−κ0 + κ, κ′) ei ω

ε2 [2τ0(L)−t]
b̂s(ω, κ′) dκ′ dω

∣∣∣∣2.
If we perform a series of such experiments with different incoming directions and average
with respect to the incoming direction, then we observe, in the asymptotic regime ε → 0,

Pκ(t) = lim
ε→0

1

(2π)dζ0(L)

∫
E
[∣∣p̂ε

ref(t,−κ0 + κ)
∣∣2] dκ0.

Proposition 5.1. The mean reflected power observed in the relative direction κ (relatively to
the backscattered direction) is

Pκ(t) = P∞(t)

[
1 − exp

(
−ω2

0

2

∫ L

z(t)

c−2
0 (z′)Č(z′, 0, 0) dz′

)
+ exp

(
ω2

0

2

∫ L

z(t)

c−2
0 (z′)

{
Č

(
z′, 0, [D0(L) − D0(z

′)]
κ

ω0

)
− Č(z′, 0, 0)

}
dz′
)]

,

(49)

in the Fraunhofer weak backscattering regime (29). Here z(t) is defined by (34),

P∞(t) = πdEsω
2
0

8c0(z(t))
Č

(
z(t),

2ω0

c0(z(t))
, 0

)
exp

(
−2
∫ L

z(t)

γ0(z
′)

ζ0(z′)
dz′
)

, (50)

and Es is given by (35).

This proposition is proved in appendix I. The reflected power Pκ(t) goes from P∞(t) for
c̄L

ω0lx
|κ| 
 1 to the maximal value P∞(t)fEBC(t) for κ = 0, where the enhancement factor is

fEBC(t) = 2 − exp

(
−ω2

0

2

∫ L

z(t)

c−2
0 (z′)Č(z′, 0, 0) dz′

)
.

If the background velocity c0 and the function Č do not depend on z, then we have for any
t ∈ (0, 2L/c0):

Pκ(t) = P∞(t)

[
1 − e− ω2

0
4c0

Č(0,0)t + exp

(
ω2

0

2c2
0

∫ c0t/2

0

{
Č

(
0, c0z

′ κ

ω0

)
− Č(0, 0)

}
dz′
)]

.

If random forward scattering is strong (β 
 1) and Č is isotropic in x, then for t large enough
so that β(c0t/L) 
 1, we have

Pκ(t) � P∞(t)

[
1 + exp

(
c3

0t
3

96d
�xČ(0, 0)|κ|2

)]
,

which shows that the enhancement factor is 2 and the width of the cone decays as t−3/2. Note
that:
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(i) The asymptotic Gaussian shape of the cone is obtained when the random fluctuations
of the medium are smooth so that the autocorrelation function is twice differentiable at
x = 0. If the fluctuations are rough, then the cone has a cusp at κ = 0 [8].

(ii) The decay rate t−3/2 of the width of the cone is specific to our regime in which the medium
fluctuations are anisotropic (the longitudinal correlation length is much smaller than the
transverse correlation length). The decay rate of the width of the cone in an isotropic
random medium is known to be t−1/2 in the physical literature and can be obtained by
diagrammatic expansions [17].

6. Statistical stability and inverse problems

6.1. Preliminary discussion

Here we discuss the conditions under which the second-order statistics of the reflected field
can be observed. Formula (22) gives in particular

lim
ε→0

∫
E
[
pε

ref(t,x)pε
ref(t + ε2s,x)

]
dx∫

E
[
pε

ref(t,x)2
]

dx
=
∫

Pref(ω, t) eiωs
[ ∫ |b̂s(ω, κ′)|2 dκ′] dω∫

Pref(ω, t)
[ ∫ |b̂s(ω, κ′)|2 dκ′] dω

,

which goes to zero when s → ∞ by Riemann–Lebesgue lemma. This shows that the
coherence time of the reflected wave is of order ε2. Therefore, we can claim that, for any
p ∈ (0, 2), we have

lim
ε→0

1

2εp

∫ t+εp

t−εp

pε
ref(t

′,x)pε
ref(t

′,x′) dt ′ = lim
ε→0

E
[
pε

ref(t,x)pε
ref(t,x

′)
]
.

A rigorous approach would make use of the fourth-order moments. This involves the study of
Wp,q for np = nq = 2 (defined in appendix A), which is beyond the scope of this paper.

In the following section we discuss the problem of estimating the medium parameters.
We again stress that we cannot expect, in our scaling regime, to estimate the actual pointwise
parameters in (1). We can only estimate the homogenized medium or macroscale parameters
that determine the reflected wave statistics. From proposition A.1 in appendix A it is clear
that the medium parameters that determine the reflected wave statistics are

c0(z),
γ0(z)

ζ0(z)
, C(z, z′,x). (51)

Our objective is therefore to construct statistically stable functionals of the observations that
give information about the macroscale parameters. We shall here focus on the Fraunhofer
weak backscattering regime (29) in the case without absorption and when the data are the
reflected intensity, beam and spectral width time profiles, respectively I (t), R(t) and K(t),
evaluated at particular source carriers and source chirp parameters: ω0,j , b0,j j = 1, 2. The
power delay spread (i.e. the duration of the reflected wave) is of the order of 2L/c̄, while the
coherence time is of the order of the initial pulse width ε2. By time-windowing the reflected
wave into time intervals long compared to the coherence time, but short compared to the
power delay spread, one can get statistically stable estimates of the reflected intensity I (t),
the reflected beam width R(t) and the spectral width K(t). From these quantities, one can in
particular reconstruct the background velocity c0(z) and the scattering coefficient s(z):

s2(z) = −�xČ(z, 0, 0), (52)

as we show in the following subsection.
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6.2. Reconstruction of the background velocity and scattering coefficient

We discuss first the problem of estimating the background velocity. The identification of the
background velocity is an important problem, in geophysics for instance [3]. As mentioned, in
the cases with no strong interface that we consider, only the analysis of the incoherent reflected
wave (as we carry out in this paper) can give an answer to this problem. We describe now how
the background velocity can be extracted from the incoherent reflections by performing two
experiments with two input Gaussian chirped beams of the form (41) with different chirps b0,1

and b0,2 (which affect R0 and Q0, but not K0). We can then observe the differences between
the reflected beam widths:

δ1(t) := ω2
0

2

R2(t, b0,2) − R2(t, b0,1) − R2
0(b0,2) + R2

0(b0,1)

b0,2 − b0,1

in theory=
∫ L

z(t)

c0(z
′) dz′. (53)

Using the fact that dz
dt

= − 1
2c0(z(t)), we can compute z(t) by integrating

dz(t)

dt
=
√

1

2

√
dδ1(t)

dt
, z(0) = L,

from which we can get the background velocity by the identity

c0(z(t)) =
√

2

√
dδ1(t)

dt
.

Alternatively, by performing two experiments with two input beams with zero chirp and
with different carrier frequencies ω0,1 and ω0,2, we can extract from the reflected beam widths
and spectral widths:

δ̃1(t) :=
⎡⎣ R2(t, ω0,2) − R2(t, ω0,1)

K2(t,ω0,2)+3K2
0

ω2
0,2

− K2(t,ω0,1)+3K2
0

ω2
0,1

⎤⎦1/2

in theory=
∫ L

z(t)

c0(z
′) dz′,

and we can use this result to extract the background velocity from δ̃1(t) as described above
for δ1(t).

Beyond the background velocity, it is possible to extract the scattering coefficient by
observing the spectral widths for two input beams with two different carrier frequencies ω0,1

and ω0,2:

δ2(t) := 2
K2(t, ω0,2) − K2(t, ω0,1)

ω2
0,2 − ω2

0,1

in theory=
∫ L

z(t)

c−2
0 (z′)s2(z′) dz′.

We can get the scattering coefficient s2(z) by the relation

s2(z(t)) = 2
√

2

√
dδ1(t)

dt

dδ2(t)

dt
.

The results of this subsection show that the imaging problem can be solved, but they
are difficult to implement in practice, because they require good estimates of derivatives of
observable quantities, which are much less statistically stable than the observable quantities
themselves. Practically, it is better to approximate the slowly varying parameters by stepwise
constant functions, i.e. to assume that the medium is a stack of random layers which have
constant background parameters. A least-square strategy can then be used to identify these
parameters by fitting the observed quantities with the theoretical ones. A particular case is
addressed in the following subsection.
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6.3. Detection of an interface

In this subsection, we consider the situation in which the medium in (0, L) is made
of two materials. The slab (L − zi, L) close to the surface has constant background
parameters c0, ζ0, γ0 and stationary random fluctuations Č(z, k,x) = Č0(k,x). The slab
(0, L − zi) has constant background parameters c1, ζ1, γ1 and stationary random fluctuations
Č(z, k,x) = Č1(k,x). By probing the medium with a beam and by observing the reflected
wave, we aim to extract the parameters

cj , γj /ζj , s2
j = −�Čj (0, 0), j = 0, 1, zi (interface location). (54)

We first give the explicit expressions for the time-dependent reflected intensity, beam
and spectral widths. The mean reflected intensity decays exponentially with time, but two
exponential branches can be distinguished. More precisely,

I (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω2

0

8c0
Č0

(
2ω0

c0
, 0

)
e− c0γ0

ζ0
t if t < ti,

ω2
0

8c1
Č1

(
2ω0

c1
, 0

)
e− c0γ0

ζ0
ti e− c1γ1

ζ1
t̃ if ti < t < ti + 2

L − zi

c1
,

(55)

where t̃ = t − ti and

ti = 2
zi

c0
.

This shows that there is a jump in the mean reflected intensity at time ti with the jump amplitude
given by

�I = ω2
0

8

(
1

c1
Č1

(
2ω0

c1
, 0

)
− 1

c0
Č0

(
2ω0

c0
, 0

))
e− c0γ0

ζ0
ti .

The spectral radius for t < ti is given by (45) and for ti < t < ti + 2L−zi

c1
by

K2(t) = K2
0 − ω2

0ti

4c0
�xČ0(0, 0) − ω2

0 t̃

4c1
�xČ1(0, 0) − �xČ1

( 2ω0
c1

, 0
)

Č1
( 2ω0

c1
, 0
) ,

where t̃ = t − ti . This shows that K2(t) is a piecewise-linear function, with a jump at time ti
whose amplitude is

�K2 =
�xČ0
( 2ω0

c0
, 0
)

Č0
( 2ω0

c0
, 0
) − �xČ1

( 2ω0
c1

, 0
)

Č1
( 2ω0

c1
, 0
) .

The mean-squared radius R2(t) is a piecewise-cubic function. For t < ti is given by (42) and
for ti < t < ti + 2L−zi

c1
by

R2(t) = R2
0 − �xČ0(0, 0)

(
1

8

(
c2

1 t̃

c0

)2

(c0ti) +
3

16

(
c2

1 t̃

c0

)
(c0ti)

2 +
1

12
(c0ti)

3

)
−�xČ1(0, 0)

(
1

12
(c1 t̃ )

3 +
1

8

(
c2

0ti

c1

)
(c1 t̃ )

2 +
1

16

(
c2

0ti

c1

)2

(c1 t̃ )

)
+

K2
0

ω2
0

(
c2

1 t̃ + c2
0ti
)2

+ 2
Q0

ω0

(
c2

1 t̃ + c2
0ti
)− 1

4ω2
0

�xČ1
( 2ω0

c1
, 0
)

Č1
( 2ω0

c1
, 0
) (c2

1 t̃ + c2
0ti
)2

, (56)

where t̃ = t − ti . There is a jump of the beam radius at time ti whose amplitude is

�R2 = c4
0t

2
i

4ω2
0

(
�xČ0
( 2ω0

c0
, 0
)

Č0
( 2ω0

c0
, 0
) − �xČ1

( 2ω0
c1

, 0
)

Č1
( 2ω0

c1
, 0
) ) .
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Therefore, by measuring the jump time ti and the jump amplitudes �R2 and �K2 for the
beam radius and spectral radius, we can extract the location of the interface and the background
velocity c0:

zi = 4

√
ω2

0t
2
i

4

�R2

�K2
, c0 = zi

ti
.

From the slope of t �→ K2(t) and t �→ ln I (t) for t < ti we get the scattering coefficient s0

and the absorption parameter γ0/ζ0:

s2
0 = 4c0

ω2
0

dK2(t)

dt
,

γ0

ζ0
= − 1

c0

d ln I (t)

dt
, for 0 < t < ti.

This completes the characterization of the parameters in the slab (L − zi, L). Next, from the
slope of the logarithm of the reflected intensity for times t > ti we get c1γ1/ζ1:

c1γ1

ζ1
= −d ln I (t)

dt
, for ti < t < ti + 2

L − zi

c1
.

In order to get c1, it is necessary to use two different input beams, either with two different
chirps or with two different carrier frequencies. For instance, by performing two experiments
with two input Gaussian chirped beams of the form (41) with different chirps b0,1 and b0,2, we
can observe the differences between the reflected beam widths after time ti :

δ1(t) = ω2
0

2

R2(t, b0,2) − R2(t, b0,1) − R2
0(b0,2) + R2

0(b0,1)

b0,2 − b0,1

in theory= c2
1 t̃ + c2

0ti .

It is a linear function for ti < t < ti + 2L − zi/c1 whose slope is c2
1. With c1 and c1γ1/ζ1,

we get the absorption coefficient γ1/ζ1. Finally, the slope of K2(t) after time ti gives the
scattering coefficient

s2
1 = 4c1

ω2
0

dK2(t)

dt
, for ti < t < ti + 2

L − zi

c1
.

7. Numerical simulations

In this section we assume that there is no background impedance variation and no absorption,
that is, ζ0(z) is constant and γ0(z) ≡ 0. We want in particular to extract the background
velocity c0(z) from the measurements of the incoherent reflected waves. We also want to
identify a sudden change in the statistics of the medium fluctuations. Observe that with
no impedance contrast there will indeed be no strong interface in the medium generating a
coherent reflected wave. The resolution of the full wave equation with several different scales
is computationally expensive. Therefore the numerical simulations in a (1 + 1)-dimensional
space are performed using the iterative scheme proposed in [9]. This scheme allows us to
obtain the complex amplitudes ǎ(ω, z, x) and b̌(ω, z, x) with a computational cost equivalent
to the paraxial wave equation, but with comparable results to the full Helmholtz equation. The
algorithm is as follows:

Step 0: start from ǎ0(ω, z, x) = 0 for all z.

Step n: solve the paraxial wave equation with source from z = L to z = 0:

∂b̌n

∂z
= − iω

2c0(z)
ν(z, x)b̌n − ic0(z)

2ω

⊥b̌n − e2iωτ0(z)

iω

2c0(z)
ν(z, x)ǎn−1,
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Figure 2. Picture (a): the source term bs(t, x) without chirp b0,1 = 0. Picture (b): one realization
ν(z, x) of the random medium. Pictures (c) and (d): reflected intensities received with the unchirped
incoming beam b0,1 = 0 (c) and with the chirped incoming beam b0,2 = −2.5 (d).

starting from b̌n(ω, z = L, x) = b̌s(ω, x), and then solve the paraxial wave equation with
source from z = 0 to z = L:

∂ǎn

∂z
= iω

2c0(z)
ν(z, x)ǎn +

ic0(z)

2ω

⊥ǎn + e−2iωτ0(z)

iω

2c0(z)
ν(z, x)b̌n,

starting from ǎn(ω, z = 0, x) = 0. We use a split-step Fourier method for solving the random
paraxial wave equations (while a finite-difference scheme was used in [9]). Although no
convergence theory is (yet) available for this scheme, it has been shown to converge to the
solution of the full wave equation by comparison with numerical simulations based on the
Helmholtz equation. Moreover, we have observed that the scheme converges very quickly
(after two or three steps) in the weak backscattering regime, even when random forward
scattering is strong. This scheme is perfectly adapted to our setting.

7.1. Detection of background velocity change

In the first set of numerical simulations the medium consists of two different layers with the
same statistics for the random fluctuations and different background velocities:

c0(z) =
{
c0 for z ∈ [L − zi, L],
c1 for z ∈ [0, L − zi),
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Figure 3. Picture (a): the mean reflected power I (t) for the unchirped and chirped incoming
beams (the two thin lines are almost undistinguishable). The thick dashed line is the theoretical
value (55). Picture (b): the difference δ1(t). The thin solid lines are the numerical results and
the thick dashed line is the theoretical formula (58). Pictures (c) and (d): the rms reflected beam
widths as a function of time for the unchirped incoming beam (c) and the chirped incoming beam
(d). The thin solid lines are the numerical results and the thick dashed lines are the theoretical
formulae (42) and (56).

with L = 128, zi = 64, c0 = 1 and c1 = 0.7. The random process ν(z, x) has the form

ν(z, x) =
∞∑

j=0

1[Lj ,Lj+1)(z)νj (x),

where L0 = 0, Lj =∑j

i=1 li ; li are independent and identically distributed random variables
with exponential distribution and mean lz = 4; νj (x) are independent and identically
distributed Gaussian processes with Gaussian autocorrelation function, standard deviation
σ = 0.04, and transverse correlation length lx = 10 (see figure 2(b)). We then have

Č2k(x) = Č0(0)
1

1 + 4k2l2
z

exp

(
−x2

l2
x

)
, Č0(0) = 2σ 2lz.

The incoming beam has a Gaussian shape in space with radius r0 = 16 and chirp b0 (with
b0 = 0 or b0 = −2.5) and a sinc shape in time with a central frequency ω0 = 1 (and central
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Figure 4. Characteristics of the reflected beam in the case of two heterogeneous layers with
different standard deviations. Picture (a): the mean reflected power I (t) for the unchirped and
chirped incoming beams (the two thin lines are almost undistinguishable). The thick dashed line is
the theoretical formula (55). Picture (b): the difference δ1(t). The thin solid line is the numerical
result and the thick dashed line stands the theoretical formula (58). Picture (c): the reflected
beam radius for the unchirped beam. Picture (d): the reflected beam radius for the chirped beam.
The thin solid lines are the numerical results and the thick dashed lines represent the theoretical
formulae (42) and (56). The faint dotted lines are the theoretical radii if the standard deviation
were 0.04 everywhere.

wave number k0 = 1) and a bandwidth B = 0.15:

b̂s(ω, κ) = 1[ω0(1−B),ω0(1+B)](|ω|) exp

(
−1

2

(
1 + i

b0

ω

)
r2

0 |κ|2
)

. (57)

Note that we have δ = Č2k0(0)/Č0(0) � 0.016 which shows that we are indeed in the weak
backscattering regime.

The separation of scales is not large in our numerical setup due to computational
limitations. As a consequence:

(1) The spatial resolution of the inversion method (which is of the order of the pulse width
times the background velocity) is not very high.

(2) The statistical stability property is not achieved and one needs to average over a
series of independent experiments (here we average over 1000 experiments). In
practice, this corresponds to repeating the experiments by moving the source to different
(lateral) locations in order to probe different (quasi-independent) regions, while the one-
dimensional background velocity profile is constant. This is feasible in a geophysical
context. Note also that our theory predicts that this averaging should not be necessary
when the separation of scales is large enough, although we cannot give a quantitative
estimate.
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Figure 5. Characteristics of the reflected beam in the case of two heterogeneous layers with
different transverse correlation radii. The subplots are defined as in figure 4. The faint dotted lines
in pictures (c) and (d) are the theoretical radii if the correlation radii were lx = 8 everywhere.

The medium is probed with two different incoming beams with two different chirp
parameters b0,1 = 0 and b0,2 = −2.5 (the latter corresponding to a passage through a
converging lens). The reflected signals are recorded (figures 2(c) and (d)), in particular the
reflected powers I (t, b0,1) and I (t, b0,2) (figure 3(a)) and the reflected beam widths R(t, b0,1)

and R(t, b0,2) (figures 3(c) and (d)). It can be checked that the reflected power does not depend
on the chirp, while the reflected beam width depends on it. Difference (53) is the quantity that
is used to determine the background velocity:

δ
(exp)

1 (t) = ω2
0

2

R2(t, b0,2) − R2(t, b0,1)

b0,2 − b0,1
− r2

0

4
(b0,2 + b0,1),

and it is plotted in figure 3(b). By a least-square fit of the data δ
(exp)

1 (t) with respect to the
theoretical formula:

δ
(theo)
1 (t; c0, c1, zi) =

⎧⎪⎪⎨⎪⎪⎩
c2

0t

2
for t < ti,

c2
0ti

2
+

c2
1(t − ti)

2
for ti < t < T ,

(58)

with ti = 2zi/c0 and T = 2zi/c0 + 2(L− zi)/c1, we obtain the estimates ĉ0 � 0.97, ĉ1 � 0.66
and ẑi � 62 for the quantities c0, c1 and zi (the theoretical values are c0 = 1, c1 = 0.7 and
zi = 64).

7.2. Detection of change in microstructure

We next carry out a series of simulations with the same numerical model as in the previous
subsection, however, we now examine the impact of two different types of background
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variations: a jump in the standard deviation of the random fluctuations of the medium and a
jump in the transverse correlation radius.

In figure 4, the background velocity c0 = 1 and the transverse correlation length lx = 10
are constant, but the standard deviation σ of the medium fluctuations goes from 0.04 in the
region [0, 64] to 0.028 in the region [64, 128]. The change in σ can be clearly seen in the
jump of the reflected power. This jump is smooth because the separation of scales is not strong
enough, and the pulse width is not much smaller than the total travel time. The resolution
obtained with the use of the incoming beam (57) with the pulse shape sinc(Bt) is of the order
of 2πc0/B ∼ 40.

In figure 5, the background velocity c0 = 1 and the standard deviation σ = 0.04 are
constant, but the transverse correlation of the medium fluctuations goes from lx = 8 in the
region [0, 64] to lx = 16 in the region [64, 128]. In this case the reflected power is constant
and the change in lx can be seen in the jump of the mean radius.

8. Conclusions

We have presented a theoretical framework that in particular can be used to characterize the
spectrum of waves reflected by a slab with anisotropic three-dimensional random fluctuations.
We consider here the case when the reflected wave is weak and incoherent, corresponding to
the absence of strong reflectors in the medium. We show how central quantities such as time-
dependent wave intensity, beam width and spectral radius depend on the medium parameters
through a system of transport equations.

Numerical simulations are carried out using a numerical scheme that is based on the
analytic decomposition of the wave field introduced in the paper. The simulations demonstrate
that information about the medium can be inferred from the spectrum of the reflections. In
particular, we are able to detect a jump in the statistical properties of the medium fluctuations
or in the background velocity by looking at the time dynamics of the reflected wave. The
analytic framework we have presented is important for dealing with such an inverse problem
where the useful information is contained in the wave spectrum.

The analysis proposed in this paper is tightly connected to the hypothesis that the
background variations of the medium (that we want to image) are one dimensional. We
do believe that an extension to three-dimensional background variations can be envisaged.
We anticipate that the description of the wave spectrum should involve a system of transport
equations along the characteristics of the slowly varying background. As long as caustics can
be neglected, the analysis of the random backscattering and of the imaging problem should go
along the same lines as those presented in this paper.
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Appendix A. The generalized system of transport equations

In this appendix we write the system of transport equations that determines the moments of
the reflection operator. The next proposition generalizes the result obtained in [8] to the case
in which the medium is absorbing and has slow variations of the background velocity and
impedance. It shows that it is possible to compute the cross moments of the reflection operator
using diffusion approximation theory in the white noise limit ε → 0.
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Proposition A.1. Let us introduce some notations: if κp(j), κ′
p(j) ∈ R

d , j = 1, . . . , np,
then the multi-vector p is the set

p = {(κp(j), κ′
p(j))}np

j=1, (A.1)

where np stands for the number of pairs of p. We introduce the high-order moments of products
of R̂ε(ω, z, κ, κ′), the reflection process, at two nearby frequencies:

U ε
p,q(ω, h, z)

= E

⎡⎣ np∏
j=1

R̂ε

(
ω +

ε2h

2
, z, κp(j), κ′

p(j)

) nq∏
l=1

R̂ε

(
ω − ε2h

2
, z, κq(l), κ′

q(l)

)⎤⎦ ,

(A.2)

where p, q are two multi-vectors of the form (A.1). We define the autocorrelation function of
the fluctuations of the medium by (6) and its Fourier transform by (25) and

Ĉ±(z, k, κ) = 2
∫

R
d

∫ ∞

0
C(z, z′,x′) e±ikz′−iκ·x′

dz′ dx′. (A.3)

The family of Fourier transforms

Wε
p,q(ω, τ, z) = 1

2π

∫
e−ih[τ−(np+nq)τ0(z)]U ε

p,q(ω, h, z) dh, (A.4)

converges as ε → 0 to the solution Wp,q of the system of transport equations

∂Wp,q

∂z
+

np + nq

c0(z)

∂Wp,q

∂τ
= −γ0(z)

ζ0(z)
(np + nq)Wp,q +

ω2

4(2π)dc2
0(z)

(LWW)p,q

+
ic0(z)

2ω

⎡⎣ nq∑
l=1

(|κq(l)|2 + |κ′
q(l)|2) −

np∑
j=1

(|κp(j)|2 + |κ′
p(j)|2)

⎤⎦Wp,q, (A.5)

with the initial conditions Wp,q(ω, τ, z = 0) = 10(np)10(nq)δ(τ ). Here the operator LW is
given by

(LWW)p,q = −
∫

[npĈ
+(z, 2k, κ) + nqĈ

−(z, 2k, κ) + (np + nq)Ĉ(z, 0, κ)] dκWp,q

−
∫

Ĉ(z, 0, κ)

⎡⎣ np∑
j=1

Wp|{j |(κp(j)−κ,κ′
p(j)−κ)},q +

nq∑
l=1

Wp,q|{l|(κq (l)−κ,κ′
q (l)−κ)

⎤⎦ dκ

−
np∑

j1 �=j2=1

∫ {
Ĉ(z, 2k, κp(j1) − κ′

p(j1))Wp|{j1,j2|(κp(j2),κ−κp(j1)),(κ−κ′
p(j1),κ′

p(j2))},q

+
1

2
Ĉ(z, 0, κ)[Wp|{j1,j2|(κp(j1)−κ,κ′

p(j1)),(κp(j2)+κ,κ′
p(j2))},q

+ 2Wp|{j1,j2|(κp(j1)−κ,κ′
p(j1)),(κp(j2),κ′

p(j2)−κ)},q

+ Wp|{j1,j2|(κp(j1),κ′
p(j1)−κ),(κp(j2),κ′

p(j2)+κ)},q]

}
dκ

−
nq∑

l1 �=l2=1

∫ {
Ĉ(z, 2k, κq(l1) − κ′

q(l1))Wp,q|{l1,l2|(κq (l2),κ−κq (l1)),(κ−κ′
q (l1),κ′

q (l2))}

+
1

2
Ĉ(z, 0, κ)[Wp,q|{l1,l2|(κq (l1)−κ,κ′

q (l1)),(κq (l2)+κ,κ′
q (l2))}
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+ 2Wp,q|{l1,l2|(κq (l1)−κ,κ′
q (l1)),(κq (l2),κ′

q (l2)−κ)}

+ Wp,q|{l1,l2|(κq (l1),κ′
q (l1)−κ),(κq (l2),κ′

q (l2)+κ)}]
}

dκ

+
np∑

j=1

nq∑
l=1

{
Ĉ(z, 2k, κp(j) − κ′

p(j))δ
(
κp(j) − κ′

p(j) − κq(l) + κ′
q(l)
)
Wp|j,q|l

+
∫

Ĉ(z, 0, κ)[Wp|{j |(κp(j)−κ,κ′
p(j))},q|{l|(κq (l)−κ,κ′

q (l))}

+ Wp|{j |(κp(j),κ′
p(j)−κ)},q|{l|(κq (l),κ′

q (l)−κ)} + Wp|{j |(κp(j)−κ,κ′
p(j))},q|{l|(κq (l),κ′

q (l)+κ)}
+ Wp|{j |(κp(j),κ′

p(j)−κ)},q|{l|(κq (l)+κ,κ′
q (l))}] dκ

+
∫ ∫ ∫

Ĉ(z, 2k, κ1)Wp|{j |(κp(j),κ2),(κ2−κ1,κ′
p(j))},q|{l|(κq (l),κ3),(κ3−κ1,κ′

q (l))}dκ1 dκ2 dκ3

}
,

where k = ω/c0(z) and we have used the notations:

p|j = {(κp(j ′), κ′
p(j ′))}np

j ′=1�=j ,

p|{j |(κ1, κ2)} = {(κp(j ′), κ′
p(j ′))}np

j ′=1�=j ∪ (κ1, κ2).

The proof of the proposition follows exactly that of [8] in which the medium was not absorbing
and had no slow variation of the background velocity and impedance.

In the weak backscattering regime (24), we have

Wp,q =
⎧⎨⎩
O(1) if np = nq = 0,

O(δ) if np = nq = 1,

O(δ2) otherwise.

We have up to terms of order δ2:
∂W(κ1,κ2),(κ3,κ4)

∂z
+

2

c0(z)

∂W(κ1,κ2),(κ3,κ4)

∂τ
= −2γ0(z)

ζ0(z)
W(κ1,κ2),(κ3,κ4)

+
ic0(z)

2ω
[(|κ3|2 + |κ4|2) − (|κ1|2 + |κ2|2)]W(κ1,κ2),(κ3,κ4)

+
ω2

4(2π)dc2
0(z)

∫
Ĉ(z, 0, κ){W(κ1−κ,κ2),(κ3−κ,κ4) + W(κ1,κ2−κ),(κ3,κ4−κ)

+ W(κ1−κ,κ2),(κ3,κ4+κ) + W(κ1,κ2−κ),(κ3+κ,κ4)

−W(κ1−κ,κ2−κ),(κ3,κ4) − W(κ1,κ2),(κ3−κ,κ4−κ) − 2W(κ1,κ2),(κ3,κ4)} dκ

+
ω2

4(2π)dc2
0(z)

Ĉ

(
z,

2ω

c0(z)
, κ1 − κ2

)
δ(κ1 − κ2 − κ3 + κ4)δ(τ ), (A.6)

with W(κ1,κ2),(κ3,κ4)(ω, τ, z = 0) = 0. Note that the coupling terms preserve the sum
κ1 − κ2 − κ3 + κ4. Therefore W(κ1,κ2),(κ3,κ4) is supported on κ1 − κ2 − κ3 + κ4 = 0

and we can write the solution in terms of three ‘effective’ wave vectors. By parameterizing
the remaining three wave vectors in a suitable form we obtain the statement of proposition 3.1.
The density V is symmetric in (κu, κv): Vκu,κv,κw

(ω, τ, z) = Vκv,κu,κw
(ω, τ, z). This can be

seen from the structure of the system (27) in proposition 3.1, and this also follows directly
from the reciprocity relation R̂ε(κ, κ′) = R̂ε(−κ′,−κ).

Appendix B. The system for the dimensionless density

In this appendix, we introduce a dimensionless formulation of the system of equations that
determines the cross spectral density V defined in proposition 3.1. The autocorrelation
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function C of the fluctuations of the medium is defined by (6). We introduce the dimensionless
autocorrelation function C of the random medium:

C(z, z′,x′) = σ 2C
(

z

L
,
z′

lz
,
x′

lx

)
,

where lz (respectively lx) is the longitudinal (respectively transverse) correlation radius of
the random fluctuations and σ is the standard deviation of the fluctuations. We denote by
Ĉ(z̃, K, μ) and by Č(z̃, K, λ) the full and partial Fourier transforms

Ĉ(z̃, K, μ) =
∫ ∫ ∞

−∞
C(z̃, z̃′, λ) e−iKz̃′−iμ·λ dz̃′ dλ, (B.1)

Č(z̃, K, λ) =
∫ ∞

−∞
C(z̃, z̃′, λ) e−iKz̃′

dz̃′. (B.2)

We introduce the dimensionless profiles c̃0(z̃), ζ̃0(z̃), and γ̃0(z̃):

c0(z) = c̄c̃0

( z

L

)
, ζ0(z) = ζ̄ ζ̃0

( z

L

)
, γ0(z) = γ̄ γ̃0

( z

L

)
, (B.3)

where c̄, ζ̄ and γ̄ are typical speed of sound, impedance and absorption coefficients. We also
define the dimensionless functions

J̃ 0(z̃) =
∫ z̃

0
c̃0(z̃

′) dz̃′, G̃0(z̃) =
∫ z̃

0

γ̃0(z̃
′)

ζ̃0(z̃′)
dz̃′, τ̃0(z̃) =

∫ z̃

0

1

c̃0(z̃′)
dz̃′. (B.4)

We consider the Fourier transform D of the cross spectral density V

Vκu,κv,κw
(ω, τ, z) = 1

2π

∫
D(ω, h, z, κu, κv, κw) e−ihτ dh. (B.5)

The following proposition shows that the parameters α and β defined by (28) determine the
evolution of D.

Proposition B.1. The density D is given by

D(ω, h, z, κu, κv, κw) = D̄D
(

ω

ω0
,
hL

c̄
,

z

L
, κulx, κvlx, κwlx

)
× exp

[
2i

hL

c̄
τ̃0

(
z

L

)
− ḠG̃0

(
z

L

)
− iκu · κv

c̄L

ω
J̃ 0

(
z

L

)]
, (B.6)

with

D̄ = ω2
0σ

2lzl
d
x L

4(2π)d c̄2
, Ḡ = 2σ̄L

ζ̄
.

The frequencies ω̃ and h̃ are frozen parameters in the equation satisfied by the dimensionless
density D(ω̃, h̃, z̃,u,v,w):

dD(ω̃, h̃, z̃,u,v,w)

dz̃
= ω̃2B̂2ω̃(z̃,w) ei α

ω̃
u·vJ̃ 0(z̃) e−2ih̃τ̃0(z̃) eḠG̃0(z̃) +

βω̃2

(2π)d

∫
B̂0(z̃, μ)

× [ei α
ω̃

μ·vJ̃ 0(z̃)D(ω̃, h̃, z̃,u − μ,v,w + μ) + e−i α
ω̃

μ·vJ̃ 0(z̃)D(ω̃, h̃, z̃,u + μ,v,w + μ)

+ ei α
ω̃

μ·uJ̃ 0(z̃)D(ω̃, h̃, z̃,u,v − μ,w + μ) + e−i α
ω̃

μ·uJ̃ 0(z̃)D(ω̃, h̃, z̃,u,v + μ,w + μ)

− e−i α
ω̃

[μ·u+μ·(v+μ)]J̃ 0(z̃)D(ω̃, h̃, z̃,u + μ,v + μ,w)

− e−i α
ω̃

[μ·u−μ·(v+μ)]J̃ 0(z̃)D(ω̃, h̃, z̃,u − μ,v + μ,w) − 2D(ω̃, h̃, z̃,u,v,w)] dμ, (B.7)

starting from D(z̃ = 0,u,v,w) = 0, where

B̂ω̃(z̃,w) = 1

c̃2
0(z̃)

Ĉ
(

z̃,
ω0lz

c̄c̃0(z̃)
ω̃,w

)
. (B.8)
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Appendix C. Proof of proposition 4.1

The mean reflected intensity I ε(t) has the limit I (t) as ε → 0:

I (t) = 1

(2π)d+1

∫
· · ·
∫

W(κ1,κ2),(κ1,κ4)(ω, t, L)b̂s(ω, κ2)b̂s(ω, κ4) dκ1 dκ2 dκ4 dω.

Using identity (B.6), this can be expressed as

I (t) = 1

(2π)d+1

∫
· · ·
∫

D(ω, h,L, 0, κ + 2κ′, κ) dκ e−iht |b̂s(ω, κ′)|2 dκ′ dh dω

= D̄

(2π)d+2

∫ ∫ ∫
E
(

ω

ω0
,
hL

c̄
, 1, 2κ′lx

)
e2i hL

c̄
τ̃0(1)−ihte−ḠG̃0(1)|b̂s(ω, κ′)|2 dκ′ dh dω,

(C.1)

where

E(ω̃, h̃, z̃,v) =
∫

D(ω̃, h̃, z̃, 0,w + 2v,w) dw.

Then, using the system of coupled differential equations (B.7), we get that the quantity
E(ω̃, h̃, z̃,v) satisfies the differential equation

dE(ω̃, h̃, z̃,v)

dz̃
= (2π)dω̃2B̌2ω̃(z̃, 0) eḠG̃0(z̃) e−2ih̃τ̃0(z̃)

+
βω̃2

(2π)d

∫
B̂0(z̃, μ)[E(ω̃, h̃, z̃,v + μ) − E(ω̃, h̃, z̃,v)] dμ,

because all but two terms proportional to β on the right-hand side of (B.6) cancel each other
when taking (u,v,w) → (0,w + 2v,w) and integrating in w. Here B̌ω̃(z̃, λ) is the inverse
Fourier transform of B̂ω̃(z̃,w):

B̌ω̃(z̃, λ) = 1

c̃2
0(z̃)

Č
(

z̃,
ω0lz

c̄c̃0(z̃)
ω̃, λ

)
. (C.2)

The initial condition for the differential equation for E is E(ω̃, h̃, z̃ = 0,v) = 0. The solution
is the function

E(ω̃, h̃, z̃,v) = (2π)dω̃2
∫ z̃

0
B̌2ω̃(z̃′, 0) eḠG̃0(z̃

′) e−2ih̃τ̃0(z̃
′) dz̃′,

which is independent of v. We next substitute in (C.1) and integrate with respect to h. The
integral in h generates a delta distribution:

I (t) = D̄

2πldx

∫ ∫ 1

0
δ

(
t − 2L

c̄
(τ̃0(1) − τ̃0(z̃))

)
ω2

ω2
0

B̌2 ω
ω0

(z̃, 0)

× eḠ(G̃0(z̃)−G̃0(1))

[ ∫
|b̂s(ω, κ′)|2 dκ′

]
dz̃ dω.

The delta distribution concentrates the integrand on a particular value of z̃:

I (t) = D̄c̄

4πldx L

∫
c̃0(z̃(t))

ω2

ω2
0

B̌2 ω
ω0

(z̃(t), 0) eḠ(G̃0(z̃(t))−G̃0(1))

[ ∫
|b̂s(ω, κ′)|2 dκ′

]
dω,

where z̃(t) ∈ (0, 1) is such that∫ L

z̃(t)

1

c̃0(z̃′)
dz̃′ = c̄t

2L
. (C.3)

The expression of the intensity in the original variables is given by (31).
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Appendix D. Asymptotic expressions for the cross spectral density

In the following two lemmas we give the asymptotic expressions for the dimensionless density
D in the regime α 
 1. They generalize the results obtained in [8].

Lemma D.1.

(i) If u · v �= 0, then limα→∞ D(z̃,u,v,w) = 0.
(ii) If u �= 0,v �= 0, and u · v = 0, then

lim
α→∞D(z̃, ω̃, h̃,u,v,w) =

∫ z̃

0
ω̃2B̂2ω̃(z̃′,w) e−2ih̃τ̃0(z̃

′) eḠG̃0(z̃
′) e−2βω̃2

∫ z̃

z̃′ B̌0(z̃
′′,0) dz̃′′

dz̃′.

(D.1)

(iii) If u = 0 and v �= 0, then limα→∞ D(z̃, ω̃, h̃, 0,v,w) = D0(z̃, ω̃, h̃,w) where
D0(z̃, ω̃, h̃,w) is the solution of

dD0

dz̃
= ω̃2B̂2ω̃(z̃,w) e−2ih̃τ̃0(z̃) eḠG̃0(z̃) +

2βω̃2

(2π)d

∫
B̂0(z̃, μ) [D0(w + μ) − D0(w)] dμ,

(D.2)

starting from D0(z̃ = 0, ω̃, h̃,w) = 0.
(iv) If u �= 0 and v = 0, then limα→∞ D(z̃, ω̃, h̃,u, 0,w) = D0(z̃, ω̃, h̃,w).
(v) If u = 0 and v = 0, then

lim
α→∞D(z̃, ω̃, h̃, 0, 0,w) = 2D0(z̃, ω̃, h̃,w)

−
∫ z̃

0
ω̃2B̂2ω̃(z̃′,w) e−2ih̃τ̃0(z̃

′) eḠG̃0(z̃
′) e−2βω̃2

∫ z̃

z̃′ B̌0(z̃
′′,0) dz̃′′

dz̃′.

By comparing the second and third items (or the fourth and fifth items) a sharp transition is
noted from the case u = 0 to u �= 0. This transition can be studied in detail by looking at
small u of order α−1.

Lemma D.2.

(i) If v �= 0, then limα→∞ D(z̃, ω̃, h̃, α−1s,v,w) = Ds(z̃, ω̃, h̃,v,w) where Ds is solution
of

dDs

dz̃
= ω̃2B̂2ω̃(z̃,w) e−2ih̃τ̃0(z̃) eḠG̃0(z̃) eis·v J̃0(z̃)

ω̃ +
βω̃2

(2π)d

∫
B̂0(z̃, μ)

× [eis·μ J̃0(z̃)

ω̃ Ds(v − μ,w + μ) + e−is·μ J̃0(z̃)

ω̃ Ds(v + μ,w + μ) − 2Ds(v,w)
]

dμ,

(D.3)

starting from Ds(z̃ = 0, ω̃, h̃,v,w) = 0.
(ii) For any s, s′, we have

lim
α→∞D(z̃, ω̃, h̃, α−1s, α−1s′,w) = Ds(z̃, ω̃, h̃, 0,w) + Ds′(z̃, ω̃, h̃, 0,w)

−
∫ z̃

0
ω̃2B̂2ω̃(z̃′,w) e−2ih̃τ̃0(z̃

′) eḠG̃0(z̃
′) e−2βω̃2

∫ z̃

z̃′ B̌0(z̃
′′,0) dz̃′′

dz̃′.

By solving the differential equation (D.3) we obtain the following integral representation
of Ds(z̃,v,w) valid for all s ∈ R

d :
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Ds(z̃, ω̃, h̃,v,w) =
∫ ∫ z̃

0
ω̃2B̌2ω̃(z̃′, λ) e−2ih̃τ̃0(z̃

′) eḠG̃0(z̃
′) e−iw·λ eiv·s J̃0(z̃′)

ω̃

× eβω̃2
∫ z̃

z̃′ B̌0(z̃
′′,λ− s

ω̃
[J̃ 0(z̃

′′)−J̃ 0(z̃
′)])+B̌0(z̃

′′,λ+ s
ω̃

[J̃ 0(z̃
′′)−J̃ 0(z̃

′)])−2B̌0(z̃
′′,0) dz̃′′

dz̃′ dλ. (D.4)

In the particular case in which s = 0 the function Ds is independent of v and we have

lim
s→0

Ds(z̃, ω̃, h̃,v,w) = D0(z̃, ω̃, h̃,w)

=
∫ ∫ z̃

0
ω̃2B̌2ω̃(z̃′, λ) e−2ih̃τ̃0(z̃

′) eḠG̃0(z̃
′) e−iw·λe2βω̃2

∫ z̃

z̃′ B̌0(z̃
′′,λ)−B̌0(z̃

′′,0)]dz̃′′
dz̃′ dλ.

We also have

lim
|s|→∞

Ds(z̃, ω̃, h̃, 0,w) =
∫ z̃

0
ω̃2B̂2ω̃(z̃′,w) e−2ih̃τ̃0(z̃

′) eḠG̃0(z̃
′) e−2βω̃2

∫ z̃

z̃′ B̌0(z̃
′′,0) dz̃′′

dz̃′.

Appendix E. Proof of proposition 4.2

The beam width Rε(t) converges to R(t) as ε → 0, where R(t) is given by

R2(t) = −
∫ · · · ∫ �κ3W(κ1,κ2),(κ3,κ4)(ω, t, L)|κ3=κ1 b̂s(ω, κ2)b̂s(ω, κ4) dκ1 dκ2 dκ4 dω∫ · · · ∫ W(κ1,κ2),(κ1,κ4)(ω, t, L)b̂s(ω, κ2)b̂s(ω, κ4)dκ1 dκ2 dκ4 dω

=
∫ · · · ∫ D(ω, h,L, 0, κ + 2κ′, κ) e−iht |∇κ′ b̂s(ω, κ′)|2 dκ dκ′ dh dω∫ · · · ∫ D(ω, h,L, 0, κ + 2κ′, κ) e−iht |b̂s(ω, κ′)|2 dκ dκ′ dh dω

−
∫ · · · ∫ (�κu

+ �κv
)D(ω, h,L, 0, κ + 2κ′, κ) e−iht |b̂s(ω, κ′)|2 dκ dκ′ dh dω∫ · · · ∫ D(ω, h,L, 0, κ + 2κ′, κ) e−iht |b̂s(ω, κ′)|2 dκ dκ′ dh dω

+

∫ · · · ∫ 2i∇κu
D(ω, h, L, 0, κ + 2κ′, κ) e−iht Im(b̂s∇κ′ b̂s(ω, κ′)) dκ dκ′ dh dω∫ · · · ∫ D(ω, h,L, 0, κ + 2κ′, κ) e−iht |b̂s(ω, κ′)|2 dκ dκ′ dh dω

,

(E.1)

and D(ω, h, z, κu, κv, κw) is defined by (B.5). By identity (B.6) we have

(�κu
+ �κv

)D(ω, h, z, 0, κv, κw) = D̄l2
xF1

(
ω

ω0
,
hL

c̄
,

z

L
, κvlx, κwlx

)
e2i hL

c̄
τ̃0(

z
L
)−ḠG̃0(

z
L
),

2∇κu
D(ω, h, z, 0, κv, κw) = D̄lxF2

(
ω

ω0
,
hL

c̄
,

z

L
, κvlx, κwlx

)
e2i hL

c̄
τ̃0(

z
L
)−ḠG̃0(

z
L
),

with

F1(ω̃, h̃, z̃,v,w) =
[
�u + �v − 2i

α

ω̃
J̃ 0(z̃)v · ∇u − α2

ω̃2
J̃ 0(z̃)

2|v|2
]
D(ω̃, h̃, z̃, 0,v,w),

F2(ω̃, h̃, z̃,v,w) =
[

2∇u − 2
α

ω̃
iJ̃ 0(z̃)v

]
D(ω̃, h̃, z̃, 0,v,w).

In the limit α → ∞, we obtain by using lemma D.2

e−2i hL
c̄

τ̃0(1)+ḠG̃0(1)

(2π)dD̄α2

∫
(�κ1 + �κ2)D(ω, h,L, 0, κ + 2κ′, κ) dκ

α→∞−→
∫ 1

0
�λB̌2 ω

ω0
(z̃, 0) e−2i hL

c̄
τ̃0(z̃) eḠG̃0(z̃)(J̃ 0(1) − J̃ 0(z̃))

2 dz̃
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− 4|κ′|2l2
x

∫ 1

0
B̌2 ω

ω0
(z̃, 0) e−2i hL

c̄
τ̃0(z̃) eḠG̃0(z̃)(J̃ 0(1) − J̃ 0(z̃))

2 dz̃

+ 2β

∫ 1

0

ω2

ω2
0

B̌2 ω
ω0

(z̃, 0) e−2i hL
c̄

τ̃0(z̃) eḠG̃0(z̃)

×
∫ 1

z̃

�λB̌0(z̃
′, 0)[(J̃ 0(1) − J̃ 0(z̃))

2 + (J̃ 0(z̃) − J̃ 0(z̃
′))2] dz̃′ dz̃,

and

e−2i hL
c̄

τ̃0(1)+ḠG̃0(1)

(2π)dD̄α

∫
2∇κ1D(ω, h,L, 0, κ + 2κ′, κ) dκ

α→∞−→ −4iκ′lx
∫ 1

0

ω

ω0
B̌2 ω

ω0
(z̃, 0) e−2i hL

c̄
τ̃0(z̃) eḠG̃0(z̃)(J̃ 0(1) − J̃ 0(z̃)) dz̃.

Substituting these limits into (E.1) we obtain that, in the large-α regime,

R2(t) = R2
0 − 2βα2l2

x

∫ 1

z̃(t)

�λB̌0(z̃
′, 0)[(J̃ 0(1) − J̃ 0(z̃(t)))

2 + (J̃ 0(z̃(t)) − J̃ 0(z̃
′))2] dz̃′

+ 4α2l4
x

∫
B̌2 ω

ω0
(z̃(t), 0)

∫ |κ′|2|b̂s(ω, κ′)|2 dκ′ dω∫
ω2

ω2
0
B̌2 ω

ω0
(z̃(t), 0)

∫ |b̂s(ω, κ′)|2 dκ′ dω
(J̃ 0(1) − J̃ 0(z̃(t)))

2

+ 4α2l2
x

∫
ω
ω0
B̌2 ω

ω0
(z̃(t), 0)

∫
κ · Im(b̂s∇κb̂s(ω, κ)) dκ′ dω∫

ω2

ω2
0
B̌2 ω

ω0
(z̃(t), 0)

∫ |b̂s(ω, κ′)|2 dκ′ dω
(J̃ 0(1) − J̃ 0(z̃(t)))

−α2l2
x

∫
�λB̌2 ω

ω0
(z̃(t), 0)

∫ |b̂s(ω, κ′)|2 dκ′ dω∫
ω2

ω2
0
B̌2 ω

ω0
(z̃(t), 0)

∫ |b̂s(ω, κ′)|2 dκ′ dω
(J̃ 0(1) − J̃ 0(z̃(t)))

2,

where z̃(t) is defined by (C.3). If we assume that the relative bandwidth B � 1 so that
B̌2ω̃(z̃, λ) � B̌2(z̃, λ) for any ω̃ ∈ (1 − B, 1 + B), then the expression of R2(t) can be
simplified to

R2(t) = R2
0 − 2βα2l2

x

∫ 1

z̃(t)

�λB̌0(z̃
′, 0)[(J̃ 0(1) − J̃ 0(z̃(t)))

2 + (J̃ 0(z̃
′) − J̃ 0(z̃(t)))

2] dz̃′

+ 4K2
0 l4

xα
2(J̃ 0(1) − J̃ 0(z̃(t)))

2 + 4Q0l
2
xα(J̃ 0(1) − J̃ 0(z̃(t)))

−α2l2
x

�λB̌2(z̃(t), 0)

B̌2(z̃(t), 0)
(J̃ 0(1) − J̃ 0(z̃(t)))

2.

We can write R(t) in terms of the original variables by using the expressions (28) for α and
β, which gives (37).

Appendix F. Proof of proposition 4.3

The spectral width Kε(t) converges to K(t) as ε → 0, where K(t) is given by

K2(t) =
∫ · · · ∫ |κ1|2W(κ1,κ2),(κ1,κ4)(ω, t, L)b̂s(ω, κ2)b̂s(ω, κ4) dκ1 dκ2 dκ4 dω∫ · · · ∫ W(κ1,κ2),(κ1,κ4)(ω, t, L)b̂s(ω, κ2)b̂s(ω, κ4) dκ1 dκ2 dκ4 dω

=
∫ · · · ∫ |κ + κ′|2D(ω, h,L, 0, κ + 2κ′, κ) e−iht |b̂s(ω, κ′)|2 dκ dκ′ dh dω∫ · · · ∫ D(ω, h,L, 0, κ + 2κ′, κ)|b̂s(ω, κ′)|2 e−iht dκ dκ′ dh dω

. (F.1)
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In the regime α 
 1 and B � 1 we obtain

K2(t) = K2
0 − 2βl−2

x

∫ 1

z̃(t)

�λB̌0(z̃
′, 0) dz̃′ − �λB̌2(z̃(t), 0)

B̌2(z̃(t), 0)
l−2
x , (F.2)

where K0 is the spectral width (39) of the incoming beam. Substituting the value of β we get
expression (44).

Appendix G. Proof of proposition 4.4

The spatial cross correlation function Aε(t,x) has the limit A(t,x) as ε → 0:

A(t,x) =
∫ · · · ∫ W(κ1,κ2),(κ1,κ4)(ω, t, L) e−i(κ1−κ2+κ4)·xb̂s(ω, κ2)b̂s(ω, κ4) dκ1 dκ2 dκ4 dω∫ · · · ∫ W(κ1,κ2),(κ1,κ4)(ω, t, L)b̂s(ω, κ2)b̂s(ω, κ4) dκ1 dκ2 dκ4 dω

=
∫ · · · ∫ D(ω, h,L, 0, κ + κ′, κ − κ′) e−ihte−iκ·x|b̂s(ω, κ′)|2 dκ dκ′ dh dω∫ · · · ∫ D(ω, h,L, 0, κ + 2κ′, κ) e−iht |b̂s(ω, κ′)|2 dκ dκ′ dh dω

.

In the limit α → ∞, we obtain by using lemma D.1 that A(t,x) has the form:

A(t,x) =
∫

ω2

ω2
0
B̌2 ω

ω0

(
z̃(t), x

lx

)
e

2β ω2

ω2
0

∫ 1
z̃(t)

B̌0(z̃
′, x

lx
)−B̌0(z̃

′,0) dz̃′[ ∫
e−iκ′ ·x|b̂s(ω, κ′)|2 dκ′] dω∫

ω2

ω2
0
B̌2 ω

ω0
(z̃(t), 0)

[ ∫ |b̂s(ω, κ′)|2 dκ′] dω
,

where z̃(t) is defined by (C.3). If we also assume that the relative bandwidth B � 1, then the
expression can be simplified to

A(t,x) =
B̌2(z̃(t),

x
lx
)

B̌2(z̃(t), 0)
e2β
∫ 1
z̃(t)

B̌0(z̃
′, x

lx
)−B̌0(z̃

′,0) dz̃′
∫∫

e−iκ′ ·x|b̂s(ω, κ′)|2 dκ′ dω∫∫ |b̂s(ω, κ′)|2 dκ′ dω
.

In the original variables, we obtain (46).

Appendix H. Proof of proposition 4.5

The spectral cross correlation function Sε(t, κ) has the limit S(t, κ) as ε → 0:

S(t, κ) =
∫ · · · ∫ W(κ1,κ2),(κ1+κ,κ4)(ω, t, L)b̂s(ω, κ2)b̂s(ω, κ4) dκ1 dκ2 dκ4 dω∫ · · · ∫ W(κ1,κ2),(κ1,κ4)(ω, t, L)b̂s(ω, κ2)b̂s(ω, κ4) dκ1 dκ2 dκ4 dω

=
∫ · · · ∫D(ω, h,L,−κ, κ1 + κ2 + κ, κ1 − κ2) e−iht b̂s(ω, κ2)b̂s(ω, κ2 + κ) dκ1 dκ2 dh dω∫ · · · ∫ D(ω, h,L, 0, κ1 + κ2, κ1 − κ2) e−iht |b̂s(ω, κ2)|2 dκ1 dκ2 dh dω

.

In the limit α → ∞, we obtain by using lemma D.1 that S(t, α−1κ) has the form:

S(t, α−1κ) =
∫∫

ω2

ω2
0
B̌2 ω

ω0
(z̃(t), ω0

ω
(J̃ 0(1) − J̃ 0(z̃(t)))κlx)|b̂s(ω, κ2)|2X(ω, κ2) dκ2dω∫∫
ω2

ω2
0
B̌2 ω

ω0
(z̃(t), 0)|b̂s(ω, κ2)|2 dκ2 dω

,

X(ω, κ2) = e
β ω2

ω2
0

∫ 1
z̃(t)

B̌0(z̃
′,κlx

ω
ω0

[J̃ 0(1)−2J̃ 0(z̃(t))+J̃ 0(z
′)])+B̌0(z̃

′,κlx
ω
ω0

[J̃ 0(1)−J̃ 0(z
′)])−2B̌0(z̃

′,0) dz̃′

× e2i ω0
ω

(J̃ 0(1)−J̃ 0(z̃(t)))κ·κ2l
2
x ,
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where z̃(t) is defined by (C.3). If we also assume that the relative bandwidth B � 1, then the
expression can be simplified to

S(t, α−1κ) = B̌2(z̃(t), (J̃ 0(1) − J̃ 0(z̃(t)))κlx)

B̌2(z̃(t), 0)

× eβ
∫ 1
z̃(t)

B̌0(z̃
′,κlx [J̃ 0(1)−2J̃ 0(z̃(t))+J̃ 0(z

′)])+B̌0(z̃
′,κlx [J̃ 0(1)−J̃ 0(z

′)])−2B̌0(z̃
′,0) dz̃′

×
∫∫

e2i(J̃ 0(1)−J̃ 0(z̃(t)))κ·κ2l
2
x |b̂s(ω, κ2)|2 dκ2 dω∫∫ |b̂s(ω, κ′)|2 dκ′ dω

.

In the original variables, we obtain (48).

Appendix I. Proof of proposition 5.1

The mean reflected power observed in the relative direction κ is given by

Pκ(t) = 1

(2π)d+1

∫
· · ·
∫

W(κ0+κ,κ2),(κ0+κ,κ4)(ω, t, L)b̂s(ω, κ2)b̂s(ω, κ4) dκ0 dκ2 dκ4 dω

= 1

(2π)d+2

∫
· · ·
∫

D(ω, h,L, 0, κ0 + κ + κ2, κ0 + κ − κ2)

× e−iht |b̂s(ω, κ2)|2 dκ0 dκ2 dh dω.

If we take into account the fact that the angular aperture of the input beam is small, i.e. much
smaller than α−1(ω0lx/c̄)

−1, and that it is quasi-monochromatic, i.e. B � 1, then we find that
the mean reflected power observed in the relative direction κ is

Pκ(t) = Es

2π

∫ ∫
D(ω0, h, L, 0, κ,−2κ0 + κ) e−ihtdh dκ0, (I.1)

where Es is the input energy defined by (35). In the large-α regime, we observe the reflected
wave in a cone of angular aperture of order α−1 and by lemma D.2:

Pα−1κ(t)
α→∞−→ πdEsD̄c̄c̃0(z̃(t))

2L
B̌2(z̃(t), 0) eḠ[G̃0(z̃(t))−G̃0(1)]

× [1 − e−2β
∫ 1
z̃(t)

B̌0(z̃
′,0) dz̃′

+ e2β
∫ 1
z̃(t)

B̌0(z̃
′,κlx [J̃ 0(1)−J̃ 0(z̃

′)])−B̌0(z̃
′,0) dz̃′]

,

where z̃(t) is defined by (C.3). In the original variables we obtain (49).
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